wireguard

Client Config notes

Docker-Compose with Mullvad Wireguard & arbitrary service

Troubleshooting

o IPTables

Wireguard Container + Server

Client Config notes

Ran this on all the hosts in the cluster; sysctl -q net. ipv4. conf. all. src _valid mark=1

Needed the privileged & net_admin for tunnel binding

- image: linuxserver/wireguard
securityContext:
privileged: true
capabilities:
add: ["NET_ADMIN", "SYS MODULE"]
env:
- name: PUID
value: "1000"
- name: PGID
value: "1000"
name: wireguard
volumeMounts:
- name: config-wg
mountPath: /config
- name: modules

mountPath: /lib/modules

Spent a lot of time troubleshooting intermittent DNS, this was because of overzealous iptables kill-
switches from mullvad blocking the upstream dns server when the cluster DNS didn't have the off
hand response, as well as blocking ICMP and other local networks which prevented side-cars from
having access from the local net (like gbittorrent over 8080 on 192.168 network)

My final client configuration:

[Interface]
PrivateKey = <mullvad provided key>

Address = <mullvad provided IP>/32

DNS = <mullvad DNS server>
PostUp = ip route add 192.168.0.0/16 via 169.254.1.1
PreDown = ip route del 192.168. 0. 0/16 via 169.254.1.1

[Peer]
PublicKey = <mullvad provided key>
AllowedIPs = 0.0.0.0/0 #Actually a take-over ip list

Endpoint = <mullvad server IP>:51820

Docker-Compose with
Mullvad Wireguard &
arbitrary service

| was able to make this work really easily in native Kubernetes pods, but lots of folks had been
asking questions about getting Wireguard connected to an arbitrary service properly and safely
that may not have the means to use that infrastructure. Below are my notes on making that dream
a reality with only compose and a few minutes of trial and error.

This compose shows wireguard + gbittorrent with some useful notes in-line. The crux of it though is

as follows:

1. Move the exposed ports off the gbittorrent service definition, and into the wireguard

definition
2. Add network_mode: "service:wireguard" to force the containers to use the same

interfaces.

version: "3.7"
services:
wireguard:
image: linuxserver/wireguard
container name: wireguard
cap_add:
- NET_ADMIN
- SYS MODULE
environment:
- PUID=1000
- PGID=1000
- TZ=Europe/London
volumes:
- /appdata/config/wireguard- test/wg: /config
- /lib/modules: /lib/modules

ports:

- 6881: 6881
- 6881: 6881 /udp
- 8088: 8088
sysctls:
- net. ipv4. conf. all. src_valid mark=1

restart: unless-stopped

gbittorrent:

image: linuxserver/gbittorrent

container name: gbittorrent

environment:

- PUID=1000

- PGID=1000

- TZ=Europe/London

- UMASK SET=022

#Remember to make this the same port as the exposed port
- WEBUI PORT=8088

volumes:

- /appdata/config/wireguard- test/gbt: /config
- /appdata/downloads: /downloads

#' ports" moved to wireguard config

restart: unless-stopped

#use the wireguard interfaces instead

network mode: "service: wireguard"

In the wireguard wg0. conf configuration, you must add a route back to your host network only if
you want to access things like webUls from your host. If everything's in the same network, you
can just leave this headless, too.

PostUp = ip route add 192.168. 0. 0/16 via $(ip route | grep default | awk '{print $3}')

[Interface]

PrivateKey = <MULLVAD KEY>

Address = <MULLVAD ADDRESS>

DNS = <MULLVAD DNS>

PostUp = DROUTE=$(ip route | grep default | awk '{print $3}'); HOMENET=192.168. 0. 0/16;
HOMENET2=10. 0. 0. 0/8; HOMENET3=172.16. 0. 0/12; ip route add $HOMENET3 via $DROUTE; ip route add
$HOMENET2 via $DROUTE; ip route add $HOMENET via $DROUTE; iptables -I OUTPUT -d $HOMENET - j
ACCEPT; iptables - A OUTPUT -d $HOMENET2 -j ACCEPT; iptables -A OUTPUT -d $HOMENET3 -j ACCEPT;
iptables -A OUTPUT ! -0 %i -m mark ! --mark $(wg show %i fwmark) -m addrtype ! --dst-type
LOCAL -j REJECT

PreDown = HOMENET=192.168. 0. 0/16; HOMENET2=10. 0. 0. 0/8; HOMENET3=172.16. 0. 0/12; ip route del
$HOMENET3 via $DROUTE; ip route del $HOMENET2 via $DROUTE; ip route del $HOMENET via $DROUTE;
iptables -D OUTPUT ! -0 %i -m mark ! --mark $(wg show %i fwmark) -m addrtype ! --dst-type
LOCAL -j REJECT; iptables -D OUTPUT -d $HOMENET -j ACCEPT; iptables -D OUTPUT -d $HOMENET2 -j
ACCEPT; iptables -D OUTPUT -d $HOMENET3 -j ACCEPT

[Peer]

PublicKey = jHxY20KpxjqAwWH4r1Pb2K6xDUDt087ivxpM1KpEOEC=
AllowedIPs = 0.0.0.0/0

Endpoint = <MULLVAD SERVER>: 51820

Pretty simple, right? Here's the results of what you came here to see.

root@f316f4f274fb: /# curl https: //am. i. mullvad. net/connected

You are connected to Mullvad (server us32-wireguard). Your IP address is 206. 217. XXX. XXX

If you're curious about the nitty gritty, here's the output from each containers interfaces & routes
to give an illustration on how this works as if it were on the same host instead of dedicated network
stacks:

From Wireguard

root@347666d9f127: /# ps -ef

uIbD PID PPID C STIME TTY TIME CMD

root 1 0 0 16:52 7 00: 00: 00 s6-svscan -t0O /var/run/s6/services
root 32 1 016:52 7 00: 00: 00 s6-supervise s6- fdholderd

root 265 1 0 16:52 7 00: 00: 00 s6-supervise coredns

root 266 1 016:52 7 00: 00: 00 s6-supervise wireguard

root 268 266 0 16:52 ? 00: 00: 00 bash . /run

root 270 265 0 16:52 ? 00: 00: 00 /app/coredns -dns. port=53

root 357 268 0 16:52 7? 00: 00: 00 sleep infinity

root 358 0 0 16:59 pts/0 00: 00: 00 bash

root 378 358 0 17:00 pts/0 00: 00: 00 ps -ef

root@347666d9f127: /# ip route

default via 172.24.0.1 dev etho

172.24.0.0/16 dev eth® proto kernel scope link src 172.24.0.2
192.168. 0. 0/16 via 172.24.0.1 dev etho

root@347666d9f127: /# ip address

1: Tlo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00: 00: 00: 00: 00: 60 brd 00: 00: 00: 00: 00: 00

inet 127.0.0.1/8 scope host 1o

valid lft forever preferred 1ft forever

3: wg0O: <POINTOPOINT, NOARP, UP, LOWER UP> mtu 1420 qdisc noqueue state UNKNOWN group default
glen 1000

link/none

inet 10. 67. xxx. xx/32 scope global wg0

valid lft forever preferred 1ft forever

151: ethO@ifl52: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 gdisc noqueue state UP group
default

link/ether 02: 42:ac:18: 00: 02 brd ff: ff: ff: ff: ff: ff link-netnsid 0

inet 172.24.0.2/16 brd 172.24. 255. 255 scope global eth®

valid lft forever preferred 1ft forever

root@347666d9f127: /# iptables-save

Generated by 1iptables-save
vl. 6.1 on Sat Aug 3
14: 48: 00 2020

*filter

: INPUT ACCEPT [16: 2307]

: FORWARD ACCEPT [0: 0]

: OUTPUT ACCEPT [17:1615]

-A OUTPUT -d 192.168.0.0/16 -j ACCEPT

-A OUTPUT -d 10.0.0.0/8 -j ACCEPT

-A OUTPUT -d 172.16.0.0/12 -j ACCEPT

-A QUTPUT ! -0 wgO -m mark ! --mark Oxca6c -m addrtype ! --dst-type LOCAL -j REJECT --reject-

with icmp-port-unreachable

COMMIT

Completed on Sat Aug 8
14: 48: 00 2020

Generated by iptables-save
vl. 6.1 on Sat Aug 8
14: 48: 00 2020

*mangle

: PREROUTING ACCEPT [16: 2307]

: INPUT ACCEPT [16: 2307]

: FORWARD ACCEPT [0: 0]

: OUTPUT ACCEPT [19:1729]

: POSTROUTING ACCEPT [19:1729]

- A PREROUTING -p udp -m comment --comment "wg-quick(8) rule for wg0" -j CONNMARK --restore-
mark --nfmask Oxffffffff --ctmask Oxffffffff

- A POSTROUTING -p udp -m mark --mark 0xca6bc -m comment --comment "wg-quick(8) rule for wg0" -j
CONNMARK - -save-mark --nfmask Oxffffffff --ctmask Oxffffffff

COMMIT

Completed on Sat Aug 8
14: 48: 00 2020

Generated by iptables-save
vl. 6.1 on Sat Aug 38
14: 48: 00 2020

*raw

: PREROUTING ACCEPT [16: 2307]

: OUTPUT ACCEPT [19:1729]

- A PREROUTING -d 10.67. xxx. xxx/32 ! -i wg0 -m addrtype ! --src-type LOCAL -m comment --comment
"wg-quick(8) rule for wg@" -j DROP

COMMIT

Completed on Sat Aug 8
14: 48: 00 2020

From gbittorrent

root@47666d9f127: /# ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 16:52 ? 00: 00: 00 s6-svscan -t0 /var/run/s6/services

root 32 1 0 16:52 7 00: 00: 00 s6-supervise s6- fdholderd

root 250 1 0 16:52 7 00: 00: 00 s6-supervise gbittorrent

abc 252 250 0 16:52 7 00: 00: 02 /usr/bin/gbittorrent-nox --webui-port=8088
root 276 © 0 17:00 pts/0 00: 00: 00 bash

root 669 276 0 17:02 pts/0 00: 00: 00 ps -ef

root@47666d9f127: /# ip route

default via 172.24.0.1 dev eth0

172.24.0.0/16 dev ethO proto kernel scope link src 172.24.0.2
192.168. 0. 0/16 via 172.24.0.1 dev etho

root@347666d9f127: /# ip address

1: Tlo: <LOOPBACK, UP, LOWER UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 00: 00: 00: 00: 00: 60 brd 00: 00: 00: 00: 00: 00

inet 127.0.0.1/8 scope host 1o

valid lft forever preferred 1ft forever

3: wg0O: <POINTOPOINT, NOARP, UP, LOWER UP> mtu 1420 qdisc noqueue state UNKNOWN group default
glen 1000

link/none

inet 10.67. xx. xx scope global wg0@

valid lft forever preferred 1ft forever

151: ethO@ifl52: <BROADCAST, MULTICAST, UP, LOWER UP> mtu 1500 qdisc noqueue state UP group
default

link/ether 02:42:ac:18:00: 02 brd ff: ff: ff: ff: ff: ff link-netnsid 0

inet 172.24.0.2/16 brd 172.24.255. 255 scope global etho

valid lft forever preferred 1ft forever

Sources:

https://nbsoftsolutions.com/blog/routing-select-docker-containers-through-wireguard-vpn

https://nbsoftsolutions.com/blog/routing-select-docker-containers-through-wireguard-vpn

Troubleshooting

Troubleshooting

IPTables

One user claimed that when they enabled wireguard via a " docker-compose up® that all containers
lost internet access.

TCPDumps showed that NAT from the bridges to the external interface had been lost at some point,
indicating that the iptables may have been dropped or altered in such a way that the docker
bridges could no longer properly NAT traffic.

One clue that was given, but missed several times. In the “iptables-save’ before wireguard came
on which broke connectivity showed no mention of legacy tables. After wireguard was started,
“iptables-legacy-save™ was reportedly needed to see all the rules. Following this instruction showed
an empty ruleset, a life without nat!

The user simply switched off nftables to "legacy" mode via the openmediavault Ul, but presumably

a newer debian user could also just run “update-alternatives --set iptables /usr/sbin/iptables-
legacy’ to get the same effect.

No problem:

Completed on Sun Aug 9 21:51:20 2020
root@K: ~#

Problem:

Warning: iptables-legacy tables present, use iptables-legacy-save to see them

root@kK: /srv/dev- disk-by- label-HC2/Docker Compose/wir eguar d#

Wireguard Container +
Server

SawToday at 9:18 AM

Evening, maybe someone can help me. | am really not a network professional. | installed the
Wireguard container on my rootserver, and on my server here in my own lan. The connection works
too, but | can't get the route right, so the docker host can access the lan of the VPN.

OxyTJToday at 9:25 AM
@Saw what | had to do for this issue is first run the following to get your subnet:
ip route | awk '!/ (dockerO|br-)/ && /src/ {print $1}'

After connecting the VPN, | run the following to add the routes, where SUBNET is the ip you got
from the previous command:

ip route add ${SUBNET} via $(ip route | grep default | awk '{print $3}')

iptables -A FORWARD -s ${SUBNET} -j ACCEPT

iptables -A FORWARD -d ${SUBNET} -j ACCEPT

iptables -A INPUT -s ${SUBNET} -j ACCEPT

iptables -A OUTPUT -d ${SUBNET} -j ACCEPT

Lastly, make sure your exposed ports for other containers are forwarded in the VPN container.

One thing to note, in case you have the same problem, it appears the INPUT and OUTPUT get wiped
from the iptables every so often, or whenever the VPN connects. In case you have the same.

