
Let's keep going with the Udemy course! We took a smol holiday break. Starting with boolean
operators.

== Equality: Checks to see if objects are equal to each other. Type of data matters so if you
compare "2" = 2 it won't yield True since you're comparing a string to an integer. If you compare
'Bye' = 'bye' it won't yield true since case matters.

!= Inequality: Checks to see if objects are UNequal to each other. So let's say you want to see if 4
is not equal to 5. Your syntax would be 4 != 5 and Python would yield True.

> Greater Than: Checks to see if the objects are greater than each other.

< Less Than: Checks to see if the objects are less than each other.

>= Greater Than or Equal to: as described. Like the greater than and equality check together.

<= Less Than or Equal to: as described like the less than and equality check together.

So we discussed comparison operators above:

Equality ==
Inequality !=
Greater Than >
Less Than <
Greater Than or Equal to >=
Less Than or Equal to <=

Now we're going to add in:

Notes - Monday 12/28/20

12/28/20 Monday

Boolean Comparison operators

Chaining Boolean/Comparison Operators

AND
OR
NOT

Let's say that we want to compare 1, 2, and 3.

1. 1 < 2 < 3 will work and output True.
2. 1 < 2 > 3 will output False even though 1 < 2 is true.

In example #2, we could use the AND operator which would link the two comparisons together. So
in other words, AND wants both the statements on either side to be True. The syntax would be:

1 < 2 AND 2 > 3

So this is checking if 1 < 2 is true AND THEN if 2 > 3```` is true. If both are true then we'll get an output of
true. But since 2 > 3``` is false, the result will output as False.

This logic links 2 statements together and checks to see if either pass the logic presented. In other
words, OR wants one of the statements on either side to be True. So if we use example #2 again,
the OR operator can be used. And the syntax would look like:

1 < 2 OR 2 > 3

So this is checking if either of the comparison statements are true. Either statement on the left or
right can yield a true output and the OR operator will output as True.

This logic looks for the reverse of what's inside the statement. Another way to say this is that the
NOT operand is looking for the opposite of the boolean or syntax or statement in the line of code.
So let's say our example is:

100 == 1

So if we ran this as is, we would expect a False output as 100 does not equal 1. But if we used the
NOT operand then we would expect a True output. This is because we're asking Python if the
example statement is NOT equal. So the syntax would look like:

not 100 == 1

AND Operand

OR Operand

NOT Operand

These AND , OR , and NOT operands can be used in these simpler boolean/comparison operators. It
could also be used in If statements.

The syntaxes might change depending on the library used but these operands could be wrapped in
a parantheses or not. For example the above NOT operand example could look like either one of
these:

not (100 == 1)
not 100 == 1

For now either of these are acceptable but as stated, the syntax may change depending on the
libraries used which will be covered later.

Future Usage

Revision #2
Created 22 December 2020 18:13:55 by cba88
Updated 28 December 2020 21:38:55 by cba88

