
Notes - Friday 01/15/21

Friday 01/15/21
Today I wanted to work on the test and comprehension part of the course which can be seen here.
They threw in something called *args and **kwargs in the middle of my coding practice. So let's
learn about args.

*args and **kwargs
*args
These are functional parameters. Arguments are *args  and pronounced "star args" and keyword
arguments are **kwargs  and pronounced "double star qw-ar-gs". These are things in Python
functions that allow for the code to accept an abitrary number of arguments and keyword
arguments without pre-defining parameters in the function calls.

So let's say we want to setup a function that will return 5% of the sum of 2 numbers. But what if I
then want to change the function to take a variable or arbitrary amount of arguments. So then I
don't have to define the number numbers the function will do. Note that the *args  will become a
tuple. The *args  could technically be anything; it could be *urwordshere  or *spam . Best practice is
to call it *args .

CBAkwarg01.pngImage not found or type unknown

**kwargs
Python offers a way to handle an arbitrary number of key word arguements. It creates a dictionary
of key value pairs. So it does the same thing that *args  does where that returns a tuple, but
instead returns a dictionary. Then the user can define values in the dictionary that can be messed
with inside the function. Again **kwargs  could be anything after ``**urnamehere . Best practice is to 
call it **kwargs``` so it's easy to recognize.

https://docs.google.com/document/d/181AMuP-V5VnSorl_q7p6BYd8mwXWBnsZY_sSPA8trfc/edit
https://bookstack.almueti.com/uploads/images/gallery/2021-01/CBAkwarg01.png


Why *args and **kwargs?
They're useful to use when you pull in outside libraries. They might not be useful now but will be
useful later. Note that they can be combined

CBAkwarg02.pngImage not found or type unknown

Things I learned from the Test - Skyline
question
The question being asked was:

"Define a function called myfunc that takes in a string, and returns a matching strnig where every
even letter is uppercase and every odd letter is lower case. Assume that the incoming string only
contains letters and don't worry about the numbers, spaces, or punctuation. The output string can
start with either upper or lower case. The letters should alternate throughout the string. Just
provide the definition for the function. You don't need to run it. Remember you need to use the
return function and not print."

The answer was:

Things I learned:

I didn't realize that you could combine range and length to count the number of letters.
.join - Joins all items in a tuple into a string with a hash character as a seperator
Remember that .append is what modifies the list that variable out calls out
An explanation on what is going on in this code can be found here

def myfunc(x):
    out = []
    for i in range(len(x)):
        if i%2==0:
            out.append(x[i].lower())
        else:
            out.append(x[i].upper())
    return ''.join(out)

Revision #2
Created 12 January 2021 23:31:06 by cba88
Updated 16 January 2021 05:15:14 by cba88

https://bookstack.almueti.com/uploads/images/gallery/2021-01/CBAkwarg02.png
https://www.w3schools.com/python/ref_string_join.asp
https://gist.github.com/Pierian-Data/5767f49f825dbc9f9bf1357b2152b010#gistcomment-2601474

