
Anson learns Python from a Udemy course. Here are some notes.

Captain's Log Progress Report
Notes - Sunday 12/20/20
Notes - Monday 12/21/20
Notes - Tuesday 12/22/20
Notes - Monday 12/28/20
Notes - Wednesday 12/30/20
Notes - Tuesday 1/5/21
Notes - Wednesday 1/6/21 - Backup of the Temperature Converter Code
Notes - Wednesday 1/6/21
Notes - Tues 01/12/21
Notes - Friday 01/15/21
Notes - Sunday 01/17/21

Learn 2 Python
Notes

Here's a progress log on what Anson learns on his Python journey. Just to keep track and see
progress.

These are taken from notes on 1/5/21

1. Finish the Udemy course on Python
2. Create the game snake
3. Turn my Excel sheet of my video game collection into a SQLite3 database to learn more

about Python and databases.
4. Learn about Kivy and Android Studio
5. Port snake to Android
6. Figure out how to turn the SQLite3 video game collection database into an app so I can

search through my collection on my phone.
7. Port snake to pybadge and circuitpython

Starting! My 2 week goal is to create the game Snake in Python. So I can kickstart my new game
dev studio.

Learned how Visual Studio Code ("VSCode"), git, and Jupyter notebook worked. Setup note taking
log on Phil's Notes Bookstack (Thanks Phil). Created Jupyter notebook for local notetaking for

Captain's Log Progress
Report
Anson learns Python

Current Goals

12/20/20 Sun

https://bookstack.almueti.com/books/anson-learns-python/page/notes---tuesday-1521
https://bookstack.almueti.com/books/anson-learns-python/page/notes---sunday-122020

Anson. Created alias to backup files to backup hard drives.

In the Udemy course, I learned:

Data Types
Numbers
Variable Assignments
Strings
String Indexing
String Slicing

Did some research to see what libraries were available for the PyBadge in CircuitPython. Found
code that someone made to create snake in micropython. Wondering if that can translate to my
pybadge.

In the course today, I learned about:

String Properties
Print formatting with strings
Lists

Discovered these Markdown notes from the Jupyter Notebook documentation which were really
helpful. And learned that VSCode can do Markdown editing with previews so I'll be using VSCode to
edit all my Markdown notes now!

In the course I learned about:

Dictionaries
Tuples
Sets
Boooleans
Manipulating files within Jupyter Notebooks and Python 3

12/21/20 Mon

12/22/20 Tues

https://github.com/cheungbx/gameESP-micropython/blob/master/snake.py
https://jupyter.brynmawr.edu/services/public/dblank/Jupyter%20Notebook%20Users%20Manual.ipynb#2.2-Markdown-Cells
https://bookstack.almueti.com/books/anson-learns-python/page/notes---monday-122120
https://bookstack.almueti.com/books/anson-learns-python/page/notes---tuesday-122220

Then took the 00-Python Object and Data Structure Basics assessment!

After a smol holiday break, I'm working on the Udemy course again. Today I learned about:

Comparison/Boolean Operators in Python
Chaining Comparison/Boolean Operators

And
Or
Not

More Udemy coursework. Today I learned about:

Control Flow - if/else/elif Statements

New year, same bullshit. Let's learn more Python. Last night I came up with some more goals and
ideas:

1. My original goal stands: I want to finish the Udemy course and make the game snake still.
2. I want to learn more about Python and SQLite3 databases. SQLite3 should be a part of

Python. So I want to load up my video game collection into a database.
3. I want to turn the database into an Android app using Kivy. So take that database and

turn it into a way that I can access the info on my phone.
4. I want to port my snake game into Android as well. Porting the .py file into an .apk.
5. Poems for your sprog message of the day: the idea is that I'd create a python

program/script that pulls all of /u/poem_for_your_sprog's poems and comments on reddit

12/28/20 Mon

12/30/20 Wed

1/5/21 Tues

https://bookstack.almueti.com/books/anson-learns-python/page/notes---monday-122820
https://bookstack.almueti.com/books/anson-learns-python/page/notes---wednesday-123020
https://bookstack.almueti.com/books/anson-learns-python/page/notes---tuesday-1521

and displays them as a message of the day when you open up your terminal. Would also
be really fun as a bot on discord to get a random sprog.

Reddit idea
GitHub

I switched to my Ubuntu machine today. It didn't have pip, anaconda, jupyter, or anything that
allowed the Jupyter notebooks to run Python. I kept getting "Data Science libraries notebook and
jupyter are not installed in interpreter Python 3.8.5 64-bit." as an error. To fix this, I had to install
pip, anaconda, ipykernel, and jupyter. Anaconda came as a script from the anaconda website. To
install scripts, I just dragged the script file in the GUI into the terminal. Then I ran the these
terminal commands. Remember updateme is my alias that does sudo apt update && sudo apt upgrade -
y && sudo apt autoremove -y && sudo apt autoclean -y && sudo snap refresh .

In terms of the Udemy course, today I learned about:

For Loops

GDQ and trying to learn Python is hard but let's make a little progress today!

In terms of the Udemy course, today I learned about:

While Loops
Keywords for Loops - Break, Continue, and Pass
Range
Enumerate

Ubuntu Machine - Installing Jupyter
Notebooks and Python

updateme
python3 -m pip install --upgrade pip
python -m pip install ipykernel --force
python -m pip install jupyter --force

1/6/21 Wed

https://www.reddit.com/r/Poem_for_your_sprog/comments/kokjf0/sprog_motd_for_arch
https://github.com/qdii/sprog-fortune
https://www.anaconda.com/products/individual
https://bookstack.almueti.com/books/anson-learns-python/page/notes---wednesday-1621

Zip
In
Min/Max
Random Library
Input
List Comprehension

See this link for more information

More Udemy coursework after a break due to the holidays and AGDQ 2021. Today I learned about:

Part 2 Testing - checked my understanding for list comprehension and for/if/elif
statements
Methods and Python Documentation aka Python help
Introduction to Functions
def keyword
Python Functions - Basics, logic, tuple unpacking, interactions

New twist to the Udemy course: Let's work on function practice problems.

The practice problems I'll work on are found here: ~/Nextcloud/L2Python/'Udemy Python
Class'/'03-Function Practice Exercises-AW-011721.ipynb'.
They're also in the notebooks from the course: ~/Nextcloud/L2Python/Udemy Python
Class/Complete-Python-3-Bootcamp Notebooks/03-Methods and Functions.

Temperature Converter Program

01/12/21 Tues

01/17/21 Sun

https://bookstack.almueti.com/books/anson-learns-python/page/notes---1621#bkmrk-temperature-converte
https://bookstack.almueti.com/books/anson-learns-python/page/notes---tues-011221
https://bookstack.almueti.com/books/anson-learns-python/page/notes---sunday-011721

Starting! My 2 week goal is to create the game Snake in Python. So I can kickstart my new game
dev studio.

I got overwhelmed with options for editors and went with Visual Studio Code ("VS Code") which was
recommended by the jwaz nerd chat. Mu will be my backup as I'm currently not sure how VSCode
will work with the Pybadge or how to get a REPL working.

Below is an example code we were to use to teach us how to save a .py file in Sublime or another
text editor.

print('hello world')

I can open Jupyter notebooks through the actual Jupyter Lab program by running jupyter-lab in the
CLI. That will open something up in the browser which I can navigate around in. Or I can open the
notebooks up in VSCode which I like since the one app can open up my code, my own notebooks,
and the notebooks from the class.

Ctrl+Shift+P then type in "Create new blank Jupyter notebook

Once I start getting more complicated projects, I'll want to keep backups or setup "source code
management" (SCM) to track changes to my code. Git helps to do this and is seperate from Github.
Git can be a local tool and I can back up my projects and code to my Nextcloud server if I want.
Github is a tool that uses git but is onilne and I could share projects with others among other
features.

As of 12/20/20. I haven't setup git yet. I should probably do so in the future.

Notes - Sunday 12/20/20

Jupyter Notebooks Notes
How to open files

How to create new notebooks in VSCode

Git Notes

Some helpful links:

VSCode documentation
Colt Steele's Learning about Git in 15 mins
Colt Steele notes to go with Youtube video above
Digital Ocean CheatSheet

Integers (int) = Whole numbers - 3, 300, 200
Floating Point (float) = Numbers with decimal places - 2.3, 4.6, 100.0
Strings (str) = Ordered sequence of characters so just text - "hello", "Sammy", "2000"
Lists (list) = Ordered sequence of objects so text, Integers, or Floating Points could go in
here - [10,"hello",200.3]
Dictionaries (dict) = Unordered Key:value pairs (more info coming later; currently doesn't
make sense to me) - {"mykey":"value", "name":"Anson"}
Tuples (tup) = It's said like "too-pul-es". It's a sequence of objects that and the order can't
be changed aka immutable (more info coming). - (10,"hello",200.3)
Sets (set) = Unordered collection of unique objects {"a","b"}
Booleans (bool) = Logical value indicating True or False

Note that:

Integers do not have decimals.

A Floating Point number can display digits past the decimal place. A floating point number does not
represent EXACT values, just a close/increasingly better approximation of a value. For example 1/3
doesn't mean the value is 0.3, 0.33, or 0.333. It's how the computer holds the approximate value.
So 0.1+0.2-0.3 doesn't equate to 0.0. Just a value really close to 0. Click this link for more info.

There's 2 main types of numbers as listed above: integers and floating point.

Python can be used as a straight up calculator. I can literally type in 2+2 and run the code to get a
value.

Types of Data

Numbers in Python

https://code.visualstudio.com/docs/editor/versioncontrol
https://www.youtube.com/watch?v=USjZcfj8yxE
https://www.notion.so/Introduction-to-Git-ac396a0697704709a12b6a0e545db049#d5e9c2b6379246a593c1ef74051e7e3c
https://www.digitalocean.com/community/cheatsheets/how-to-use-git-a-reference-guide
https://docs.python.org/3/tutorial/floatingpoint.html

You could also have python output a "Mod operator" or a "Modulo".

Let's say you wanted to do 7/4. You would say that 4 goes into 7 one time with a remainder of 3. So
the mod operator will output the remainder. In this way, you can quickly see if a number is easily
divisible by another number.

In the previous example, we had a remainder of 3. So 4 does not go into 7 easily. But 5 goes into
50 cleanly. We would expect the remainder to be 0.

To use the mod operator, you'd use the % sign. X % Y

You can also use the mod operator to check if a number is even or odd. For example if you have a
variable that is a number and you're not sure if it's even or odd. If I get a remainder from the mod,
then it's odd. If I get 0, then it's even.

23 is odd. 20 is even.

I can do Exponents by doing x ** y .

Remember PEMDAS for order of operations - parenthesis, exponents, multiplication/division,
addition/subtraction

If I just type in normal formula. Python will follow the order of operations. If I want to control the
order Python does the math in, I will have to use parenthesis.

We could assign the above data types a variable name.

Names can't:

Start with a number
No spaces - need to use underscore _ instead
No special symbols besides _ (Python will complain if the special symbols are used)

Mod operator %

Exponents **

Order of Operations

Variable Assignments

Names should:

Be in lowercase as a best practice
Avoid keywords as variable names such as list or str (the editor should highlight those
keywords a different color)

Python uses dynamic typing. So variable names can be reassigned. The below can happen. In other
langauges such as C++, this can't be done. Once the integer of "my_dogs" is assigned, it stays that
way.

my_dogs = 1
``my_dogs = ["Armani"]

Dynamic Typing Pros:

easy to work with
saves time since you don't have to assign a data type. So for example, in the above
example, C++ wants to see an integer data type assignment. int my_dogs=1

Dynamic Typing Cons:

Easy to have unexpected data types could cause bugs

Let's say we don't know what kind of data "a" is and we want to find out. We would use type(a)

type() could help find those errors (discussed below)

I ran the code below in a Jupyter notebook.

Note that above we can see that type() shows that my data was an integer then a floating point
number. We can also see that "type" is highlighted in an aqua green color. That shows that its a

How to determine data type using Type()

a = 5

type(a)

a = 30.1

type(a)

Syntax Highlighting and variables

python keyword. So we shouldn't name a variable "type". If I accidently make a variable named
"type", I can undo this by restarting the variable. In VSCode, the symbol is the little green circular
arrow.

Let's say I want to calculate my taxes.

Income = 100
Tax Rate = 0.1

Then run my_taxes and the answer should be 10.0

Strings are sequences of characters. The syntax used is single or double quotes.

'hello'
"hello"
" I like pie "

Strings are ordered sequences. So we can index and slice to grab parts of the string. The
spaces/whitespace also count as characters. The syntax is ' or " so that if there's an abbreviation
for example, you can include the abbreviation without confusing python. So for example the string
would be:

"I'm a lover of pie"

Instead of:

'I'm a lover of pie' Which would generate an "invalid syntax" error if the code was run.

Variable name example

my_income = 100

tax_rate = 0.1

my_taxes = my_income * tax_rate

Strings

Indexing

Indexing allows you to grab a single character from the string. It uses [] notation after the string or
string variable. If my string is hello:

'hello'
Characters = h e l l o
Index show = 1 2 3 4 5

Reverse index allows me to grab the last letter of hello even if I don't know how long the string is.

Reverse Index = 0 -4 -3 -2 -1

Slicing allows me to slice a part of the string to grab a subsection of multiple characters. The
syntax would be:

[start:stop:step]

Where:

start = numerical index for the start of the slice
stop = index I'll go up to but not include
step = size of the slice we'll take (size of the jump)

So in the above examples, we're asking Python to return the string we type in. That's why we see
the little quotes. But we could also print the strings out. This removes the quotes and actually
prints out the string. If we wanted to print multiple strings for example, we would need to use the
print command.

In the print command, we could also use escapes \n or tabs \t to change the formatting of the
thing we print out. Syntax would be print("hello \n world" and print(hello \t world) respectively. More on
this coming up.

We can also check the length of the string using the len command. Syntax is len('x')

String Indexing and Slicing - Let's look at it more in depth Indexing in more depth Let's set a
variable called mystring to be a sting that says "Hello World". The syntax for using a string would
be mystring[position]. The positions start at 0, NOT 1. When we type in the variable, this is referred
to as "calling". So below I'll set the mystring variable then call it and run an index to get the first
letter H which is in position 0. Typing in the 0 would be called "passing".

If the position 0 gives us H. The index would count left to right in positive integers. So let's say I
want the capital W. I would pass 7 in the index to get it.

Slicing

'hello world'

Let's say I want to have "d" be the result of calling the index. I could use the normal index and pass
10. Or I could use the reverse index. If I want to use a reverse index, I'd count from right to left
from the end of the string. So I would pass -1 to get the "d" or -5 for the "W".

Let's say now mystring = 'abcdefghijk" . I need to redefine mystring. Then use syntax mystring[position:]
. The : shows where the silce should start or end. I want to grab a slice or chunk of the string that's
C through to the end.

So to grab C through to the end I'd type mystring[2:] .

If I want to grab "abc", I'd write mystring[:3] .

I can also grab a slice in the middle so if I want "def" I'd type mystring[3:6]

Remember that you're going UP to the position but NOT including that position. So that's why I'm
including position 3 which id "d" in my string but it won't print out "abcd" but instead prints "abc".

Slicing in more depth

Day 2 of working on the Udemy Python Bootcamp course! We're going to pickup with more info
about strings.

Strings are "immutable" or cannot be changed. So for example:

If I set name = "Bob"
And then I try to set 'B' to 'R', I'm not allowed to. I'll get an error.

If I do want to change that 0 position, I will have to use concatenation.

1. Slice out the parts of the string I want to keep by creating a new string based on the first
string. So in this case, I wan't to create the string "last_letters" based on "name".

2. Concatenate using + so I would take the "last_letters" and then Concatenate "R" to make
Rob.

last_letters = name[1:]
'R' + last_letters

Using Concatenate is a way to put strings together. I can also add a variable to a string and run the
cell to generate a longer statement.

So the first run would say "Hello World it is nice out". And running the cell again would add on more
"it is nice out". Concatenate could be added or multiplied. Remember that it's easy to confuse
integers and strings. This is a con of the flexibility of the dynamic typing in Python. For example:

2+3 will yield 5
"2"+"3" will Concatenate the strings "2" and "3" and yield 23

Notes - Monday 12/21/20

String Properties and Methods

Concatenate

x = 'Hello World'
x = x + ' it is nice out`
x

Functions

Variables can be modified with Python built in functions. First, define the variable as a string. In my
example, I want x = 'Hello World' .

Now if I type x. in VSCode, a list of functions will appear. Syntax for these functions are
variable.function() . If you don't include (), then Python will think you're just asking what that function
will do.

Example of functions include:

upper for all upper case letters in the string
lower for all lower case letters in the string
split will take your string and turn it into a list. The default split will divide the string at
each whitespace. I can tell split where to split the list up.

To add comments to my code, create a line that begins with # then write the comment out

There are situations when you want to put a variable or objects ("inject") into a string so you can
print it. For example:

There's 2 methods to do this:

1. .format()
2. f-strings (formatted string literals)

The .format() syntax is: print('urnormalstringhere {}'.format('urobject'))

Important Note: Comments

String Formatting for Printing -
String Interpolation

my_name = "Jose"
print("Hello" + my_name)

.format()

You can add in multiple objects and multiple {}. The syntax would be: print('urstringhere {} {}
{}'.format('object1','object2','object3'))

And within the {} you can assign a position number and then set an order based on the positions in
the format string. The syntax would be: print('urstringhere {0} {1} {2}'.format('object1','object2','object3'))

You can also assign the object keywords and then set an order based on the keywords. The syntax
would be: print('urstringhere {x} {y} {z}'.format(x='object1',y='object2',z='object3'))

Let's say we have a variable that's a division problem. And then we want to print the answer from
the division problem in a cleaned up format.

So the example code would be:

Then we want to print the result but just with 3 decimal places. The syntax would be:
{value:width.precisionf}

So the print code would look like:

Where value r is the variable result. And then it's passed inside the {} to adjust the float
formatting.

Value is the variable we set in the .format()
Width is how many white spaces you want to show.
Precision (f) is how many decimal places do you want to show
If you don't want the precision decimal places and just want to set a number of positions,
leave the f out.

f-string is a simplified version of the .format(). So Let's say my variable is name = 'Bob' and I want
to print a statement that says "Hello his name is Bob".

The example code would be:

Floating point number formatting

result = 100/77
result

print("The result was {r:1.3f}".format(r=result))

f-string String Interpolation

So the syntax is print(f'urstringhere {urobjecthere}') .

Multiple objects can be used in an f-string. And .format() and f-string can be combined.

More reading can be found here:

pyformat
f-strings

list = [1,2,3,4,5]

Lists are ordered sequences that can hold objects. Could be a list of integers or a mixed list of data
types. They use [] brackets and commas to seperate objects in the list. Syntax is [x,y,z] but we
probably want to name the list or assign it a variable. So the syntax would be variablename = [x,y,z] .

Various methods can be called off them. Some things you can do with lists:

indexing (this should feel like manipulating a string)
slicing (this should feel like manipulating a string)
nesting lists
check the length using len()
concatenate lists together
add functions (remember to include () to have the functions work and not have Python tell
you what things are)

Append adds a new object to the end of the list which is called affecting the list in
place - syntax would be list.append()
Pop removes objects off the list or by index location. Index location can be in normal
index order or reverse index. - syntax would be list.pop(x) (leave x out if you want
the last object taken away)
Sort will put your list in order. Note that this is done in place. The sorted output
needs to be assigned a variable in the next line after the sorted output happens in
order to save the sorting. - syntax is list.sort()

To save the sorted output do the following:

list.sort()
sorted_list = list

Don't do:
sorted_list = list.sort()

name = "Bob"
print(f'Hello, his name is {name}')

Lists

https://pyformat.info/
https://docs.python.org/3/reference/lexical_analysis.html#f-strings

Unlike a string, lists can be changed or are mutable. So If I have a list showing 1-5, I could change 1
to ONE by using:

list[0] = "ONE"
list

Day 3 of Python Bootcamp LFG.

Dictionaries are unordered mappings for storing objects. Mappings are collections of objects that
are stored using a key. A sequence stores objects using the position. Mappings won't have an order
and can't be sorted. They can't be indexed or sliced.

There are dictionaries that can be ordered called ordereddict which will be covered later.

Lists store objects in an ordered sequence. Dictionaries store objects using a key value pairing. The
value is a Python object. This value pairing allows the user to grab the object without knowing the
index location. Retrieving something from a dictionary can be faster than getting it from a list.

The syntax is:

```{'key1':'value1','key2':'value2'}````

Note the single quote ' is used.

To retreive something from the dictionary, you'd type in the dictionary name then pass the value
you want. The syntax is:

urdictionary['urkeyhere']

Dictionaries can hold (among other things):

Lists
Floating point numbers
Strings
Integers
Other dictionaries

I can call dictionaries within dictionaries or list index positions within dictionaries. I would first
retreive the object as seen above with the basic command urdictionary['urkeyhere']  but then I'd
addon the second object or command I'm trying to pass. For example, if I wanted to retrive an
index from the dictionary then call out index position 2, my command would look like:

urdictionary['urkeyhere'][2]

Notes - Tuesday 12/22/20

Dictionaries



 

If I want to add to an existing dictionary, I would simply call the dictionary I previously defined,
then add a new key. The syntax would be:

urdictionary['urnewkeyhere'] = urnewobjecthere

This command could be used to create a new object and key in the dictionary or modify an existing
key with a new object.

 

Dictionaries have functions. Some examples are:

Keys - Shows all the keys in the dictionary
Values - Shows all the values aka objects in the dictionary
Items - Shows everything in the dictionary but as a tuple ("Too-pul") which will be
discussed in a later topic.

The syntax would be: dictionary.function()

Remember like before, remember to include () or else you're asking Python to tell you what the
function could do. Instead of actually executing the function.

Let's do a basic example of manipulating a dictionary that has a list of letters

list = [a,b,c,d]

Let's say I want to retreive "c" then save it as a variable and capitalize it.

The long way looks like:

Dictionary Manipulation Exercise

1 alphabet_dict = {"k1":['a','b','c','d']}
2 alphabet_dict
3 # Set up the dictionary and called it to confirm it's good.
4 alphabet_list = alphabet_dict['k1']
5 alphabet_list
6 # Set the variable alphabet_list to be the k1 key of the dictionary then called it to confirm it's good.
7 letter_c = alphabet_list[2]
8 letter_c
9 # Set the variable to pull "c" from the variable alphabet_list
10 letter_c.upper()



Or you could stack calls on top of each other to make it easier. Python allows this flexibility. So
easier:

Say "too-puls"

tuple = (1,2,3,4,5)

Tuples are like lists except they can't be changed ("immutable"). Once an object is inside a tuple, it
can't be changed. The features and manipulation of a tuple is like a list but not as flexible. But
tuples have count and index functions.

Tuples are often used for objects that are passed between things and it keeps your data safe and
not over-written.

Sets are unordered collections of unique elements. There's only one representative of that object.
So "a" or 2 can only be in the set once.

Syntax is:

We'll learn more about sets later in the course. But a use for sets right now is you could take a list
of numbers and get a unique list of the values.

So if I have a list of random numbers, casting the list into a set will show me the unique numbers in
that set.

11 # Used function upper to capitalize "C"

1 alphabet_dict['k1'][2].upper()
2 # Did work from above lines in one step:
3 # First we re-use the alphabet_dict dictionary that was defined
4 # Second we call the key 'k1'
5 # Third we call index position 2
6 # Last we use function upper to capitalize that value

Tuples

Sets

1 ursethere = set()
2 ursethere.add(urobjecthere)



Booleans are operators that allow you to convey True (aka integer 1), False (aka integer 0), or
None. statements. They're really helpful when dealing with control flow and logic. Make sure that
your boolean is Capitalized. Otherwise Python thinks you're creating a variable.

For example it plays a part in comparison operators like > and ==. If I ask Python if 1 > 2  (Is one
greater than 2?) or 1 == 1  (Is one equal to 1?), it will output a boolean answer.

The following notes all only work in Jupyter Notebooks which came from iPython notebooks.

In Jupyter Notebooks, in a cell I can directly create a text file. The command is %%writefile . The
syntax is %%writefile urfilename.txt````. Then on the second line after %%writefile``` I can start writing the
actual text I want to add to the file.

I could then create a variable to open the file. If I get a Errno 2  when I try to open the file, I spelled
the file name wrong or I'm pulling from the wrong directory. The syntax would be urvariable4filename 
= open('urfilename') .

To check your current directory, type pwd  into a Jupyter notebook cell. Just like how you would
check the current directory in the terminal.

If I opened the file with a variable, there's functions I can do. It's similar to the functions we
previously covered before with the urvariable4filename.function() . And of course, remember the ().
These functions include:

Read - it will list out the entire contents of the file
\n means new line which is an escape sequence which was previously covered
Running read will move the cursor to the end. To reset the cursor, you need to use
Seek.

Seek - this is how you reset the cursor in read. Syntax is urvariable4filename.seek(0)

1 list_num = [4,4,4,4,4,3,3,3,3,6,7,7,7,8,89,9]
2 set(list_num)
3 {3, 4, 6, 7, 8, 9, 89}
4 # Line 3 is the output of Line 2

Booleans

Files - Simple Input/Output with
Files in Jupyter Notebooks



Read Lines - it will read through the lines in a more legible manner and you can perform
other things to this readlines function. Syntax is urvariable4filename.readlines()
Open - This just opens up the file that you want to work on. Simply using this open
method will require that you close the file.
Close - Remember to close out your files so that the computer doesn't think Python is still
using the file.

To open files in another location, you have to change the file path when running open.

For Linux the syntax is: myfile = open("/Users/YouUserName/Folder/myfile.txt")
For Windows the syntax is: myfile = open("C:\\Users\\YourUserName\\Home\\Folder\\myfile.txt")

To open files AND then set modes and do something with the files, I'll want to use with open  so the
syntax would be:

You could use this method to:

Read what's in the file using in the indented line print(urvariablenamehere.read())
Append the file or add on to it using in the indented line urvariablenamehere.write('urtexthere')
Write the file using

Read only = mode='r'
Write only - will overwrite or create new files = mode='w'
Append only - add onto existing files = mode='a'
Reading and Writing = mode='r+'
Wrtiring and Reading - will overwrite or create new files = mode'w+'

with open ('urvariable4filename',mode='urmodehere') as urvariablehere:
    whatyouwannadohere(urvariablenamehere.function())
    # note the indentation

%%writefile Modes



Let's keep going with the Udemy course! We took a smol holiday break. Starting with boolean
operators.

== Equality: Checks to see if objects are equal to each other. Type of data matters so if you
compare "2" = 2  it won't yield True since you're comparing a string to an integer. If you compare
'Bye' = 'bye'  it won't yield true since case matters.

!= Inequality: Checks to see if objects are UNequal to each other. So let's say you want to see if 4
is not equal to 5. Your syntax would be 4 != 5  and Python would yield True.

>  Greater Than: Checks to see if the objects are greater than each other.

< Less Than: Checks to see if the objects are less than each other.

>=  Greater Than or Equal to: as described. Like the greater than and equality check together.

<= Less Than or Equal to: as described like the less than and equality check together.

So we discussed comparison operators above:

Equality ==
Inequality !=
Greater Than >
Less Than <
Greater Than or Equal to >=
Less Than or Equal to <=

Now we're going to add in:

AND

Notes - Monday 12/28/20
12/28/20 Monday

Boolean Comparison operators

Chaining Boolean/Comparison Operators



OR
NOT

Let's say that we want to compare 1, 2, and 3.

1. 1 < 2 < 3  will work and output True.
2. 1 < 2 > 3  will output False even though 1 < 2  is true.

In example #2, we could use the AND  operator which would link the two comparisons together. So
in other words, AND  wants both the statements on either side to be True. The syntax would be:

1 < 2 AND 2 > 3

So this is checking if 1 < 2  is true AND THEN if 2 > 3```` is true. If both are true then we'll get an output of 
true. But since 2 > 3``` is false, the result will output as False.

This logic links 2 statements together and checks to see if either pass the logic presented. In other
words, OR  wants one of the statements on either side to be True. So if we use example #2 again,
the OR  operator can be used. And the syntax would look like:

1 < 2 OR 2 > 3

So this is checking if either of the comparison statements are true. Either statement on the left or
right can yield a true output and the OR  operator will output as True.

This logic looks for the reverse of what's inside the statement. Another way to say this is that the
NOT  operand is looking for the opposite of the boolean or syntax or statement in the line of code.
So let's say our example is:

100 == 1

So if we ran this as is, we would expect a False output as 100 does not equal 1. But if we used the
NOT  operand then we would expect a True output. This is because we're asking Python if the
example statement is NOT equal. So the syntax would look like:

not 100 == 1

AND Operand

OR Operand

NOT Operand



These AND , OR , and NOT  operands can be used in these simpler boolean/comparison operators. It
could also be used in If statements.

The syntaxes might change depending on the library used but these operands could be wrapped in
a parantheses or not. For example the above NOT  operand example could look like either one of
these:

not (100 == 1)
not 100 == 1

For now either of these are acceptable but as stated, the syntax may change depending on the
libraries used which will be covered later.

Future Usage



I started Python statements on 12/28/20 Monday but didn't get very far. So I'm including it here.

Let's learn about stuff like If then statements. I don't know a lot of statement examples lol...

These statements will introduce the idea of control flow. This is where we build a lot of code but
only want certain parts of the code to execute depending on certain conditions. For example, if  my
dog is hungry then  I will feed the dog. This code will be executed in this condition but otherwise
the code will move on to the next part if the condition isn't met.

Some keywords used in control flow are:

if
elif
else

These statements use syntax that takes advantage of whitespaces/indexes and colons : . The
whitespace/indexes are unique to Python and how Python

if Statements are self explanatory. They begin the block of code that you want to be executed in a
certain conditions or situation. Below is the basic syntax. Note that line 2 is indented. Line 2 will be
executed when the if statement in line 1 is True and met.

Notes - Wednesday 12/30/20
12/30/20 Wednesday

Python Statements

if, elif, and else statements

Control Flow Statements

if statements



It's like a juiced up if statement. The if statement only executes when the condition is met. And
then that's it. if/else will execute when the condition is met otherwise it will do something else.
That's why it's called if/else. Below is the basic syntax. Note the lines are indented.

So if the some_condition is met in line 1, then the line 2 code will be executed. Otherwise line 3 will
trigger and then the line 4 code will be executed and done. The line 4 else line doesn't have a
condition associated with it. This is because it relies on the line 1 condition being True.

Syntax-wise, note that the if and else in lines 1 and 3 are lined up.

In the if/else statement above, if you want to check for other conditions before the else statement
kicks in, you can add in some elif statements. elif is Else If so you can stack if statements.

1 if some_condition:
2   execute_some_code_here

if/else statement

1 if some_condition:
2   execute_some_code_here
3 else:
4   execute_some_more_code_here

if/else statement with elif statement

1 if some_condition:
2   execute_some_code_here
3 elif some_other_condition:
4   execute_some_other_code_here
5 else:
6   execute_some_otherother_code_here

Examples on how the above statements
would work
if statement



Let's say that we want our code to have a variable called 'hungry'. If it's true, then I want to print
out 'Gimme food!'.

So our example would look like the below. And when the code is run, we would get an output of
Gimme food! . If we set 'hungry' to false, there's no output. This is because the if statement isn't
activated so there's no expectation to see anything.

Now with the above statement, let's say that that when hungry = False, we want to see an output
of I'm not hungry . This is so that when the False condition is met, we get some kind of output
instead of nothing like above.

Let's say I want to make a shitty guide around town about places. I want to ask the bot about
locations and have them described to me.

Locations:

Auto shop - "Car library"
Bank - "Money storage"

1 hungry = True
2 
3 # hungry set to True would output "Gimme food!"
4 # hungry set to False wouldn't output anything
5
6 if hungry:
7    print("Gimme food!")

if/else statement

1 hungry = True
2
3 # hungry set to True would output "Gimme food!"
4 # hungry set to False wouldn't output anything
5
6 if hungry:
7   print("Gimme food!")
8 else:
9   print("I'm not hungry")
10
11 # see how the else statement is aligned with if and print is indented

if/elif/else Statements



Other not listed locations - "That option isn't available"

I can setup an equality statement to check and see if my variable is 'bank' or "auto shop'.

Remember that we can stack elif statements so for example, let's say we want Library to output
"book storage"

Example if/elif/else commented code:
1 location = 'Bank'
2 # location is set to bank as a variable
3 
4 if location == 'Auto Shop':
5   print('Car library')
6 # I'm checking with an equality statement to see if the location is Auto Shop here. If the location 
7 is Auto Shop, then the description will be "Car library".
8
9 elif location == 'Bank':
10  print("Money storage")
11 # I'm checking with an equality statement to see if the location is Bank here. If the location is 
12 Bank, then the description will be "Money storage".
13
14 else:
15  print("That option isn't available")
16 # I'm checking with an equality statement to see if none of the defined locations are listed, the 
17 code will output a generic "That option isn't available.

Example if/elif/else code w/ no comment:
location = 'Bank'

1 if location == 'Auto Shop':
2   print('Car library')
3 elif location == 'Bank':
4   print("Money storage")
5 else:
6   print("That option isn't available")

location = 'Bank'

1 if location == 'Auto Shop':



2   print('Car library')
3 elif location == 'Bank':
4   print("Money storage")
5 elif location == 'Library':
6   print("Book storage")
7 else:
8   print("That option isn't available")



New year, same course. Let's learn more about Python.

Many objects in Python are iterable or are capable of being repeated. This means we can iterate
over every element in the object. For example, we can:

Iterate or repeat every element in a list
Each character in a string
Every key in a dictionary

An associated term is iterable which means the object can be iterated.

We can use For Loops to execute a block of code for each iteration.

Basic Syntax looks like:

So in this for loop, I'm saying that if I see this variable, it's a stand-in for the list of numbers. When I
see the list of numbers, I want it to print out the list of numbers. But I could also just say that when
I see that list of numbers, I want it to print out "Hello World". So let's change my example:

If line 3 says to print bananas , it will just output the list of numbers I had in for_loop_list1. If I said
for it to print hello world, I'd get Hello World back 10 times since I have 10 items in the list.

Notes - Tuesday 1/5/21
1/5/21 Tuesday

For Loops

1 variable_2_iterate = [1,2,3]
2 for my_variable_name_4_item in variable_2_iterate
3    print(my_variable_name_4_item)

1 for_loop_list1 = [1,2,3,4,5,6,7,8,9,10]
2 for bananas in for_loop_list1:
3    print(bananas)



Take note of the indentations.

Let's look at iterations in strings now. The below example will print out each character in 'Hello 
World' .

Note that you don't have to set any variables if you don't want to. Using _  is useful for when you
want the code to do something but you don't intend on using the block of code again or don't need
the variable in the future.

No variable for the string:

No variables at all:

1 for_loop_list1 = [1,2,3,4,5,6,7,8,9,10]
2 for bananas in for_loop_list1:
3    print('Hello World')

Advanced Example 1

1 for num in for_loop_list1:
2     # Check for even numbers
3     if num % 2 == 0:
4     # This says I'm setting variable to num then
5     # checking that when I divide by 2, the    
6     # remainder is 0
7         print(f'Even Number: {num}')
8     else:
9         print(f'Odd Number: {num}')
10    # f-string literal to make the printing look nicer
11    # so I'm setting up what I want it to say then putting
12    # variable 'num' in the {}

Advance Example 2

1 mystring = 'Hello World'
2 for letter in mystring:
3   print(letter)

1 for banana in 'Hello World':
2   print(banana)



Tuples have a special feature called Tuple Unpacking. This is commonly used in Python libraries.
There will be tuples inside a list. If you call them in a for loop, the tuples in the list will be repeated
as the objects being iterated on. But you could also further unpack them into their individual
objects. So the For Loop could also pull out one object in the tuple. It does this by repeating the
tuple as a packed object and then you can unpack it to a more granular level. So the syntax would
be:

So an example might be:

With your output being: 2,5,8.

You can setup dictionaries in For Loops and they have the same tuple unpacking features.
Remember that dictionaries are NOT sorted. The default output in dictionaries is the key. The
syntax would be as seen below. And you'd get the keys as the outputs.

Let's say I want to see both the keys and the values. I have to modify the code in line 2 by adding
.items()  to the end of object.

1 for _ in 'Hello World':
2   print('Fuck you')

Tuples in a For Loop

1 # your_data_here - could be a list or a tuple or a string
2 for ur_variable_name in your_data_here:
3   print(variable_u_want_2_print)

1 tuple_list = [(1,2,3),(4,5,6),(7,8,9)]
2 for x,y,z in tuple_list:
3   print(y)

Dictionaries in For Loops

1 ur_dictionary = {'k1':1,'k2':2,'k3':3}
2 for item in ur_dictionary:
3   print(item)

1 for_dict = {'k1':1,'k2':2,'k3':3}
2 for item in for_dict.items():
3   print(item)



Let's say I want to see the tuple unpacking in action. I have to modify the code in line 2 by adding
the variable setup so key  would be the left value and value  would be the right value. Then I'd set
.key()  to the end of object. This would output the key. And I can run it for value by swapping in
.value()  in line 2 and value  in line 3.

1 for_dict = {'k1':1,'k2':2,'k3':3}
2 for key,value in for_dict.key():
3   print(key)



1/6/21: My first Python Code. It converts temperatures from F to C and C to F.

Huge thanks for @Tokugero and @Leeoku for helping me. And Girlshark for the inspiration

Notes - Wednesday 1/6/21 -
Backup of the Temperature
Converter Code

Code with comments

# Instantiate initial true flag to enter loop
run_loop = True
# Set global variable to count
retry = 0
# Runs code while retry is under 3
while retry < 3:

    # While set to go
    while run_loop:
        # Try to capture a float at input time so we don't have to parse it later
        try:
            temp = (float(input("Enter temperature = ")))
        except Exception:
            # Exception catches all errors
            # more info here: https://docs.python.org/3/library/exceptions.html
            print("Input isn't a temperature; try again. Max 3 attempts. Attempts:",retry+1)
            retry += 1
            # If we can't establish a float for the first input, we'll simply skip the rest of this iteration and never set
            # the run_loop flag to false, allowing loop to continue
            # Print is setup so it tells me how many attempts I'm at and shows the count
            break
            # Ends the program if I guess too much

        # Instantiate a sub loop



        run_loop_sub = True

        while run_loop_sub:
            try:
                unit = str(input("Enter C or F (for Celsius or Farhenheit) = "))
            except Exception:
                print("Input needs to be c/C or f/F")
                # Harder to hit this since "" is a string in input, but if it fails for whatever reason 
                # just try again
                continue

            if unit.lower() == "c":
                fahrenheit = (temp * 9/5) + 32
                print(f'{round(fahrenheit,2)} F')
                print('You know the temp now!')
                # Completion condition met, set loop flag to false to exit loop after this iteration
                run_loop_sub = False

            elif unit.lower() == "f":
                celsius = (temp - 32) * 5/9
                print(f'{round(celsius,2)} C')
                print('You know the temp now!')
                # Completion condition met, set loop flag to false to exit loop after this iteration
                run_loop_sub= False

            else:
                print("You need to enter either c/C or f/F")
                # There is no satisfactory completion here, so don't set the close flag

            # If we make it here, that means that the sub while loop was satisfied, and there is no further exceptions 
to
            # skip this flag; we can probably end the loop
            run_loop = False
            
    #if retry == 3:
    #    run_loop = False
        # Not sure if this helps or hurts
        # After experimenting, it doesn't seem to matter if it's here

Code without comments



run_loop = True
retry = 0
while retry < 3:

    while run_loop:
        try:
            temp = (float(input("Enter temperature = ")))
        except Exception:
            print("Input isn't a temperature; try again. Max 3 attempts. Attempts:",retry+1)
            retry += 1
            break

        run_loop_sub = True

        while run_loop_sub:
            try:
                unit = str(input("Enter C or F (for Celsius or Farhenheit) = "))
            except Exception:
                print("Input needs to be c/C or f/F")
                continue

            if unit.lower() == "c":
                fahrenheit = (temp * 9/5) + 32
                print(f'{round(fahrenheit,2)} F')
                print('You know the temp now!')
                run_loop_sub = False
                

            elif unit.lower() == "f":
                celsius = (temp - 32) * 5/9
                print(f'{round(celsius,2)} C')
                print('You know the temp now!')
                run_loop_sub= False

            else:
                print("You need to enter either c/C or f/F")
            run_loop = False
            



 

Often, we'll have lists of numbers and instead of typing out all the numbers in the list, we can use
the Range function. This works similar to the slicing function mentioned above. So let's say I want
to print out all the numbers in a range. I could setup a list:

num_list = [0,1,2,3,4,5,6,7,8,9]

Or I could use range. Remember that like in a slice, the range ends one value before the one you
define. So if I put 10 into the range, Python counts up to 9. The basic syntax is:

 range (number-1)

You can also specify where you're starting the range. Syntax is:

range (start, end-1)

You can also add in a step. Syntax is:

range (start,end-1,step)

Or you can get a list of numbers with a range using:

list(range(start,end-1,step))

 

Takes any iterable object and returns an index counter and the object or elements. So let's say you
want to keep track of how many times a Loop runs. This is better explained with examples:

Notes - Wednesday 1/6/21
1/6/21 Wed
Other Useful Operators and Functions

Range Operator

Enumerate Function



This is the example before I learned Enumerate :

Now let's simplify the example with Enumerate

 

This puts lists together. The basic syntax is zip . So the objects in the list will be determined by the
list with the least amount of functions. The output is a tuple but the tuple only shows if you run
something. Otherwise it acts like a normal list. You can also do tuple unpacking.

Again this makes more sense looking at examples:

This is the above output but in a list form:

1 # enumerate function
2 # I want to count the loops happening
3 # I could setup this counting thing 
4 # but we do this enough in Python that we have enumerate
5 
6 index_count = 0
7 
8 for letter in 'abcde':
9     print('At index {} the letter is {}'.format(index_count,letter))
10    index_count += 1

1 # This counts the loops using enumerate and outputs tuples
2 
3 index_count = 0
4 word = 'abcde'
5 
6 for letter in enumerate(word):
7   print(letter)

Zip Function

1 zip_list1 = [1,2,3,4,5,6]
2 zip_list2 = ['a','b','c']
3 zip_list3 = [100,200,300]
4 
5 for item in zip(zip_list1,zip_list2,zip_list3):
6     print(item)



list(zip(zip_list1,zip_list2,zip_list3))

And here's zip with tuple unpacking:

 

We can use this to check if something is in a list, strings, dictionaries. It will output a boolean True
or False. Basic syntax is:

thing_2_check in [ur_object_here]

List: Is 2 in a list of 1,2,3? This will output True. If I swap 2 for 'x', it will output False.

2 in [1,2,3]

String: Is 'a' in 'a world'? This will output True.

 'a' in 'a world'

Dictionary: I can check for keys or values. I setup a dictionary then need to add .values()  or .keys()

 

There's a built in Min and Max function to check the min and max in a list. Syntax is (min(list))`` and 
(max(list))```

 

1 for a,b,c in zip(zip_list1,zip_list2,zip_list3):
2     print(b)

In Operator

1 d = {'k1':123}
2 
3 123 in d.values()

Min/Max

Random Library



There's a library called random which has functions. These functions can generate random
numbers. The basic syntax is:

from random import function

1. Shuffle - Scrambles a list. So for example let's scramble a list and then output the new
scrambled list:

2. Random number generator - Randint will generate a random number within a range. The
basic syntax is below:

 

This let's you accept user input. The basic syntax is input(ur_input_here) . To save the input, you can
cast it as a variable. So the example syntax would be result = input(ur_input_here) .

Result would be a string though. So you'd want to then cast the result as another type. So the
example would be:

result = int(input('Fav number:'))

 

After I got to the end of the Udemy course and it was testing time, I tried to write a program that
converts temperature into Celsius and Fahrenheit. I used this code as the starting point.

Pieces of code I'll need to understand the notes going forward:

1. Temperature Converter Baby Code.py - For base baby code

Select Random Functions:

1 mylist = [1,2,3,4]
2 from random import shuffle
3 shuffle(mylist)
4 mylist

1 random import randint
2 randint(x,y)

Input Function

Temperature Converter Program

https://docs.python.org/3.8/library/random.html
https://www.pathwalla.com/2019/06/class-11-computer-science-sumita-arora_98.html


2. Temp Convert Phil 1.py - For Step 1 code
3. Temp Convert Phil 2.py - For Step 2 code
4. Temp Convert Phil 2 - Anson Mod Final.py - For Step 2 code - Final Code

 

So here's the basic code I made using the starting point. I added in the temperature rounding and
the Unit checking.

 

1. I want to have the code check for errors. So if I put in temp = asf and unit = F, I want it to
tell me I'm bad.

2. I want the code to loop through 3 times. So if I make mistakes, I want it to re-prompt me
again to input my values. After 3 guesses, it quits out.

 

My base baby code

# Intro Words
# This is a beginner program for Anson to learn how to make a simple
# temperature conversion program. This will convert from C to F and in reverse

temp = float(input("Enter temperature = "))
unit = input("Enter C or F (for Celsius or Farhenheit) = ")

if unit == "F" or unit == "f":
    fahrenheit = (temp * 9/5) + 32
    print(f'{round(fahrenheit,2)} F')
elif unit == "C" or unit == "c":
    celsius = (temp - 32) * 5/9
    print(f'{round(celsius,2)} C')
elif unit != "F" or unit != "f" or unit != "C" or unit != "c":
    print("Not a valid unit, try again.")

Next steps

Step 1 Code



The base code is "Temperature Converter Baby Code.py". Then I wanted to add in mistake proofing
so if I put in asdf  as the temperature, it would say "Oh you messed up, try again" and reprompt
me. Jwaz nerd chat introduced me to "try/except" which is explained nicely here. And they also
introduced me to NameError  and ValueError  which is explained here.

Try/Except doesn't won't set anything if it doesn't work though. It only sets the variable if it works.
So I'm getting a NameError with this code I came up with for Step 1 (I got the idea for checking if
the value is a float from here):

Phil helped me with the code "Temp Convert Phil.py". His code looks like:

# Intro Words
# This is a beginner program for Anson to learn how to make a simple
# temperature conversion program. This will convert from C to F and in reverse

temp = input("Enter temperature = ")
unit = input("Enter C or F (for Celsius or Farhenheit) = ")

try:
    temp_float = float(temp)
except ValueError:
    print("Not a valid temp")
 while temp_float == float:
    if unit == "F" or unit == "f":
        fahrenheit = (temp_float * 9/5) + 32
        print(f'{round(fahrenheit,2)} F')
    elif unit == "C" or unit == "c":
        celsius = (temp_float - 32) * 5/9
        print(f'{round(celsius,2)} C')
    elif unit != "F" or unit != "f" or unit != "C" or unit != "c":
        print("Not a valid unit. Try again.")
if temp_float != float:
    print("You messed up. Try again.")

temp = (input("Enter temperature = "))
unit = input("Enter C or F (for Celsius or Farhenheit) = ")

try:
    temp_float = float(temp)
except ValueError:

https://www.w3schools.com/python/python_try_except.asp
https://www.journaldev.com/33500/python-valueerror-exception-handling-examples
https://www.codespeedy.com/check-if-a-number-is-float-or-not-in-python/


Phil's notes on the code:

1. He taught me that quit()  or exit()  are things that exist. So now the code just quits out
when I put in the wrong values.

2. A while loop I would reach for if I had more than one thing to iterate through, but in this
situation we have 1 unique thing to make a decision on 1 time. I might use a while if I had
1000 temperatures but I couldn't be sure how many times I needed to go through the
processing for conversion

3. The if elif else is the right way to think abou tthe linear decision process, if one thing,
otherwise if another thing, otherwise here's what to do when you're out of options

4. Finally, because in my solution I didn't use a loop of any kind, pass doesn't work for this
either. In a loop a pass would be proper if you needed a reason to exit the loop but
continue to the logic after the loop. Instead, when you need to exit the whole program,
exit() or quit() would be better tools

 

Now I want the code to repeat itself. I want the code to allow me 3 tries before quitting out. I had
the ideal of using true or false booleans and while loops but wasn't sure how to bridge the gap. Phil
helped with this code called "Temp Convert Phil 2.py":

    print("Not a valid temp")
    quit()

if not temp_float:
    print("You messed up. Try again.")
    quit()

if unit.lower() == "f":
    fahrenheit = (temp_float * 9/5) + 32
    print(f'{round(fahrenheit,2)} F')
elif unit.lower() == "c":
    celsius = (temp_float - 32) * 5/9
    print(f'{round(celsius,2)} C')
else:
    print("You messed up. Try again.")

Step 2 Code

# Instantiate initial true flag to enter loop
run_loop = True

# While set to go



while run_loop:
    # Try to capture a float at input time so we don't have to parse it later
    try:
        temp = (float(input("Enter temperature = ")))
    except Exception:
        print("Input isn't a temperature; try again")
        # If we can't establish a float for the first input, we'll simply skip the rest of this iteration and never set
        # the run_loop flag to false, allowing loop to continue
        # Exception catches all errors
        # more info here: https://docs.python.org/3/library/exceptions.html
        continue

    # Instantiate a sub loop
    run_loop_sub = True

    while run_loop_sub:
        try:
            unit = str(input("Enter C or F (for Celsius or Farhenheit) = "))
        except Exception:
            print("Input needs to be c/C or f/F")
            # Harder to hit this since "" is a string in input, but if it fails for whatever reason 
            # just try again
            continue

        if unit.lower() == "f":
            fahrenheit = (temp * 9/5) + 32
            print(f'{round(fahrenheit,2)} C')
            # Completion condition met, set loop flag to false to exit loop after this iteration
            run_loop_sub = False

        elif unit.lower() == "c":
            celsius = (temp - 32) * 5/9
            print(f'{round(celsius,2)} F')
            # Completion condition met, set loop flag to false to exit loop after this iteration
            run_loop_sub= False

        else:
            print("You need to enter either c/C or f/F")
            # There is no satisfactory completion here, so don't set the close flag



Notes on the code:

1. Instantiate to represent an instance
2. Try/Except has the Exception  class which catches all built-in, non-system existing

exceptions. This is what I wanted when I was messing with ValueError  and NameError
above.

3. Instead of the !=  I was using to check for the case, the way Phil handled it was to just
parse the input into a string then uses unit.lower()  to set the case to lower case only. That
way it doesn't matter what the case is.

4. Comments are good
5. Loops and subloops are a thing. Could have a overall loop and loops underneath the

overall loop

 

So now I got most of the code working. "Temp Convert Phil 2.py" aka the code above will keep
looping until it gets the correct answer. But now I want to add in the 3 strikes or the code ends. So
my code is found in "Temp Convert Phil 2 - Anson Mod Final.py". It looks like:

        # If we make it here, that means that the sub while loop was satisfied, and there is no further exceptions to
        # skip this flag; we can probably end the loop
        run_loop = False

# Instantiate initial true flag to enter loop
run_loop = True
# Set global variable to count
retry = 0
# Runs code while retry is under 3
while retry < 3:

    # While set to go
    while run_loop:
        # Try to capture a float at input time so we don't have to parse it later
        try:
            temp = (float(input("Enter temperature = ")))
        except Exception:
            # Exception catches all errors
            # more info here: https://docs.python.org/3/library/exceptions.html
            print("Input isn't a temperature; try again. Max 3 attempts. Attempts:",retry+1)
            retry += 1
            # If we can't establish a float for the first input, we'll simply skip the rest of this iteration and never set
            # the run_loop flag to false, allowing loop to continue

https://www.merriam-webster.com/dictionary/instantiate
https://docs.python.org/3/library/exceptions.html


            # Print is setup so it tells me how many attempts I'm at and shows the count
            break
            # Ends the program if I guess too much

        # Instantiate a sub loop
        run_loop_sub = True

        while run_loop_sub:
            try:
                unit = str(input("Enter C or F (for Celsius or Farhenheit) = "))
            except Exception:
                print("Input needs to be c/C or f/F")
                # Harder to hit this since "" is a string in input, but if it fails for whatever reason 
                # just try again
                continue

            if unit.lower() == "c":
                fahrenheit = (temp * 9/5) + 32
                print(f'{round(fahrenheit,2)} F')
                print('You know the temp now!')
                # Completion condition met, set loop flag to false to exit loop after this iteration
                run_loop_sub = False

            elif unit.lower() == "f":
                celsius = (temp - 32) * 5/9
                print(f'{round(celsius,2)} C')
                print('You know the temp now!')
                # Completion condition met, set loop flag to false to exit loop after this iteration
                run_loop_sub= False

            else:
                print("You need to enter either c/C or f/F")
                # There is no satisfactory completion here, so don't set the close flag

            # If we make it here, that means that the sub while loop was satisfied, and there is no further exceptions 
to
            # skip this flag; we can probably end the loop
            run_loop = False
            
    #if retry == 3:



Notes on the code:

1. There's a hang up, the code doesnt close cleanly like it did in "Temp Convert Phil 2.py"
after the temperature is input correct. But it does work.

2. When the 3 guesses are put in, so "asdf" for the temperature, I created a print that warns
how many attmepts are left and what attempt number we're on.

3. The last 4 lines of code don't seem to do much. Not sure why I can just run a while loop as
is.

4. Learned what a global variable is.
5. Learned what a counter is and how break works.

    #    run_loop = False
        # Not sure if this helps or hurts
        # After experimenting, it doesn't seem to matter if it's here

https://stackoverflow.com/questions/55268357/how-do-i-exit-a-while-true-loop-after-5-tries


Objects in Python have methods. So for example the .split()  and .append()  are types of methods. A
list of the methods can be found by just typing in mylist.  and seeing the popup window in VSCode.
You can also use the help function which would be help(mylist.mymethod)  which will output help. It's
like man  in the terminal.

For more in-depth documentation, you can go to the official Python documentation.

Functions allow us to create blocks of code that can be repeated or executed multiple times. This
unlocks more capabilities and problem-solving.

Creating functions uses specific syntax. We use the def  keyword to define a function. This includes
the def keyword, indentation, and proper structure. So let's look at the basic syntax:

1. def = Tells Python you're creating a function
2. name_of_function = This is the name of your function. Note it uses "snake casing" which is

the lower case words seperated with underscores _. This is the standard Python way to
note functions so it's easy to ID later.

Notes - Tues 01/12/21
Tuesday 01/12/21
Methods and Python Documentation

Intro to Functions

def Keyword - Define a Function

def name_of_function():
    ```
 Docstring
    ```
    then_your_code_goes_here

https://docs.python.org/3.8/


3. parenthesis () = We can pass in arguements or parameters into the function. This sets up
future potential.

4. colon : = Indicates to Python and upcoming indented block which will be what's inside the
function.

5. Docstring ``` = It's a multiple format to put in comments about the function. I've been
using it in Markdown to show lines of code and been using multiple lines of # to do the
same thing.

6. Then you write your code that you want the function to execure.

Note that functions can accept arguements to be passed by the user.

Typically we use return  keyword to see the result of the function instead of printing it out. We can
use return  to assign the output of the function to a new variable. So this "saves" the output. Return
will be covered in depth later.

Functions allow us to create blocks of code that can be repeated or executed multiple times. This
unlocks more capabilities and problem-solving.

Creating functions uses specific syntax. We use the def  keyword to define a function. This includes
the def keyword, indentation, and proper structure. So let's look at the basic syntax:

# random method to show what they are
mylist = [1,2,3,4]
mylist.pop()
4

# help function for methods
help(mylist.pop)

Help on built-in function pop:

pop(index=-1, /) method of builtins.list instance
    Remove and return item at index (default last).
    
    Raises IndexError if list is empty or index is out of range.

Intro to Functions

def Keyword - Define a Function



1. def = Tells Python you're creating a function
2. name_of_function = This is the name of your function. Note it uses "snake casing" which is

the lower case words seperated with underscores _. This is the standard Python way to
note functions so it's easy to ID later.

3. parenthesis () = We can pass in arguements or parameters into the function. This sets up
future potential.

4. colon : = Indicates to Python and upcoming indented block which will be what's inside the
function.

5. Docstring ``` = It's a multiple format to put in comments about the function. I've been
using it in Markdown to show lines of code and been using multiple lines of # to do the
same thing.

6. Then you write your code that you want the function to execure.

Note that functions can accept arguements to be passed by the user.

Typically we use return  keyword to see the result of the function instead of printing it out. We can
use return  to assign the output of the function to a new variable. So this "saves" the output. Return
will be covered in depth later.

Let's create a function called say_hello  which will output Hello and then a name. In this example I
define the function as ```say_hello``. Then on the next indented line, I tell python what the

def name_of_function():
    ```
 Docstring
    ```
    then_your_code_goes_here

# Let's create a function where we're adding numbers

def add_function(num1,num2):
    return num1+num2

# Now with return, we're able to save the output of the function as the "result"
# We want add_function to run with the numbers 1 and 2
result = add_function(1,2)

# Now we can see what the result from above
print(result)
3

Basic Functions in Python Practice



function does. Then run the function to get the output.

Now let's add in a parameter variable which we can pass using an f-string literal. So we'd add
'name into the parathesis after say_hello  and then the next line has an f-string literal which
contains the variable. Then we want to output the function but add in a name. Note that the
variable 'name' could be anything but we want it to be easily understood. For example I used this
to show how many tries were left in my Temperature Converter Program.

Basic Syntax would be def ur_function(ur_variable)

Note that if I run say_hello() , I'll get a "positional arguement error" which means I missed putting
something in for the name.

def say_hello():
    print('smell')
    print('you later')

say_hello()

smell
you later

Function Variable

def say_hello(name):
    print(f'Hello {name}')

say_hello('Girlshark')

Hello Girlshark

say_hello()

TypeError                                 Traceback (most recent call last)
<ipython-input-32-faa5fc24272a> in <module>
----> 1 say_hello()

TypeError: say_hello() missing 1 required positional argument: 'name'

Default Value



Let's say that we don't want that error to happen. We can setup something called a "default value".
So this is the value that would show up if we missed inputting something after say_hello . But then
it'd work normally after we put in an input.

Basic Syntax would be def ur_function(ur_variable='default_value')

As mentioned above, we typically don't have functions just print stuff out. Otherwise we'd just print
them out instead of setting up a function. Instead, we want to use the return  keyword. print  just
shows the output while return  allows you to save the output as a variable.

Note in the below example, we've set 2 variables in the define function (aka first line) line.

Basic Syntax would be (note there's no parenthesis when using return):

Let's compare what happens when we try to save the output from print  vs return . Note that we can
use these together. It just yields a different output.

def say_hello(name='stupid; You forgot to put something in'):
    print(f'Hello {name}')

say_hello()

Hello stupid, You forgot to put something in

say_hello('wizbro')

Hello wizbro

Return Keyword

def ur_function(ur_variables):
    return do_something_to_variables

def add_num(num1,num2):
    return num1+num2

# See I saved it
result = add_num(10,20)
result

30



# Let's compare print vs return
def print_result(a,b):
    print(a+b)

def return_result(a,b):
    return a+b

# I tried to save the result of print_result then check the type. 
# Note that the result is nonetype

result = print_result(10,20)
type(result)

30
NoneType

# Now compare that the the return function
# I saved the return result then output it

result2 = return_result(10,20)
result2

30

# Then I checked the type which gives me integer
type(result2)

int

# Combine print + result
# This isn't 100% needed. Good for things like troubleshooting.

def myfunc(a,b):
    print(a+b)
    return a+b

result = myfunc(665,1)

666



Note that python is dynamically typed so you don't have to tell Python what data/object type you're
inputting before you run the code. So let's say you've got user input. That input  value yields a
string and you might want a number instead.

Reminder that logic is stuff like if or else statements.

For example, let's write a function that checks if a number is even.

Above has the noob version of the definition. But you can compress the return line if there's a
boolean check.

So the above result is: result = number % 2 == 0

And the advanced mode is: return number % 2 == 0

Now let's check a list. We want to return True if any number is even inside the list.

Functions with Logic

def even_check(number):
    result = number % 2 == 0
    return result

even_check(20)

True

even_check(21)

False

def even_check(number):
    return number % 2 == 0

even_check(16)

True

def check_even_list(num_list):
    for number in num_list:
    # check all the variable objects in the defined list



Now let's have an output that when there's a non-even number, we get False. If we just modify
pass  in the last night to return False , the code will only run once since we're essentially telling the
code to return True and False at the same time. Instead, we need to setup the code so that there's
multiple loops. First is the even number = output True loop. Then we setup a second loop to check
for odd numbers. So the new return False line would align with the For loop.

        if number % 2 == 0:
        # if any numbers have a remainder of 0 after dividing by 2
            return True
        # return the True boolean
        else:
            pass
        # otherwise pass or end the code

check_even_list([1,2,3])

True

check_even_list([3,5,7])
# If I run this list, I currently only output if there's something even. So there's no output. That's what the pass 
does.

def check_even_list(num_list):
    for number in num_list:
    # check all the variable objects in the defined list
        if number % 2 == 0:
        # if any numbers have a remainder of 0 after dividing by 2
            return True
        # return the True boolean
        else:
            pass
        # otherwise pass or end the code

def check_even_list(num_list):
    for number in num_list:
        if number % 2 == 0:
            return True
        else:
            pass
# Above the code is what we had before.



Ok now let's say we want the program to return all the even numbers in a list. Otherwise it will
return an empty value. Note you can setup a placeholder function for variables you're not sure of
yet.

    return False
# So now what this is saying, run the first loop to check even number = True. 
# If that loop doesn't work, the code is stopped with pass and 
# then it will return False

check_even_list([1,2,4])

True

check_even_list([1,3,5])

False

def check_even_list(num_list):
    even_numbers = []
    # Here is the empty placeholder list

    for number in num_list:
        if number % 2 == 0:
            even_numbers.append(number)
            # Here we're editing the even_number variable using append
            # Remember append adds new objects to the end of the list
            # so we're setting a variable and checking that variable to be even
            # then we're adding those numbers to the list

        else:
            pass
            # if this doesn't work out, it'll just stop the program

    return even_numbers
    # here we're returning the even_numbers variable

check_even_list(range(0,11))
# finally we're running the function with the range 0-10



Now we're going to return mulitiple items using tuple unpacking which was discussed previously.
Let's run an example to remind me how Tuple Unpacking works.

Turns out we can use tuple unpacking for a function too. Let's setup a new example where we have
a list of work hours and we want to find the employee of the year.

[0, 2, 4, 6, 8, 10]

check_even_list([1,3,5,7])
# running another list with no even numbers and we get an empty list

[]

Functions and Tuple Unpacking

stock_prices = [('APPL',200),('GOOG',400),('MSFT',100)]

for item in stock_prices:
    print(item)
    
('APPL', 200)
('GOOG', 400)
('MSFT', 100)

for ticker,price in stock_prices:
    print(price-(.15*price))
    # we're unpacking the price but also
    # showing the price with a 15% loss - F
    
170.0
340.0
85.0

work_hours = [("Krabs",32),("Squidward",40),("Spongebob",2000)]
# Here's a list of the Krusty Krab employees and their hours

def employee_check(work_hours):
# we're setting up the function and variable



    current_max = 0
    employee_of_month = ""
    # This sets the current max variable as a placeholder for the hours later
    # and the employee of the month variable as a placeholder

    for employee,hours in work_hours:
        if hours > current_max:
        # this checks the hours from the tuple
        # if it's more the current_max hours
        # it resets the variables current_max and employee_of_the_month
            current_max = hours
            employee_of_month = employee
        else:
            pass
        # if the above loop is finished, then the code stops

    return (employee_of_month,current_max)
    # this returns the variables

result = employee_check(work_hours)
result
# this stores the function output as a new variable
# the current employee_check is now Spongebob

('Spongebob', 2000)

# We can do tuple unpacking on the function now
name,hours = employee_check(work_hours)
hours

2000

result

('Spongebob',2000)

Interactions Between Functions



Typically a Python script, code, program will contain several functions interacting with each other.
We'll take the results of one function and use them as inputs to another function. To show this,
we're going to write a 3 cup monte shuffle game. We won't see the graphics but mimic the effect
with lists. And we're not going to see the shuffle. The user will randomly guess.

First, let's have a reminder that the random  library exists. That library has a shuffle  function which
will randomy shuffle a list of numbers. So let's look at that.

Note that a function will be needed to store the shuffle  output.

from random import shuffle
# this imports shuffle from the random library

example_list = [1,2,3,4,5,6,7]
# this generates a list from 0-7 called example_list

shuffle(example_list)
# note this can't be stored and can't be returned as is

example_list

[1, 3, 6, 4, 7, 5, 2]

def shuffle_list(mylist):
    shuffle(mylist)
    return mylist
# this function stores the shuffle so I can use it repeatedly

result = shuffle_list(example_list)
# variable result uses function shuffle_list to shuffle the example_list i had above
result

[2, 3, 1, 4, 5, 7, 6]

# Now we can simulate O as the ball in the cup shuffle game
# let's setup a list then use the shuffle_list function from above
mylist = ['','O','']
shuffle_list(mylist)

['O', '', '']



# Now let's setup the player's guess
def player_guess():

    guess=''

    while guess not in ['0','1','2']:
        guess = input("Pick a location: 0, 1, 2")

    return int(guess)

player_guess()

2

# Now let's write a function to check the guess

def check_guess(mylist,guess):
    if mylist[guess] == "O":
        print("Correct!")

    else:
        print("Wrong guess!")
        print(mylist)
        
# Now let's combine it all

# Initial List
mylist = ['','O','']

# Shuffle List
mixedup_list = shuffle_list(mylist)

# User Guess
guess = player_guess()

# Check Guess
check_guess(mixedup_list,guess)



Okay so you now know functions!

A big part of this section of the course will be testing your new skills with exercises. We have 3
main parts of exercises.

Part 1: 10 In Course Coding Exercises

We're going to start off with just the basics with a series of 10 problems. These problems should
feel relatively easy, just some quick exercises to get you comfortable with the syntax of functions.
If you feel uncomfortable with these, check out lecture 26 for some useful links for warm-up
problems from codingbat.com , but hopefully these exercises should feel relatively easy.

These are in-course coding exercises. Solutions can be found linked here:

https://docs.google.com/document/d/181AMuP-
V5VnSorl_q7p6BYd8mwXWBnsZY_sSPA8trfc/edit?usp=sharing

In between these in-course coding exercises we'll have a quick lecture on *args and **kwargs.

Part 2: Function Practice Exercises

Here we'll have a jupyter notebook with some exercises for you to answer, we'll have a quick
overview lecture, and then have you attempt problems, afterwards we'll have an explanatory
solutions video. These problems are ranked WarmUp, Level 1, Level 2, and Challenge. You should
feel comfortable with Warmup and Level 1 and Level 2. Challenge problems here are very difficult,
so don't feel bad if you don't want to attempt them yet! :)

After this we'll cover a few more topics through some videos.

Part 3: Function and Methods Homework

We finish off this section with even more exercises! Here we have various function word problems
for you to solve, again in a notebook and we will cover the solutions in a video afterwards.

Wrong guess!
['O', '', '']

Overview of Quick Function
Exercises #1-10 (aka notes before
the Quiz coming up)



Best of luck! If you have any questions, post to the QA forums and we'll be happy to help you out!



Today I wanted to work on the test and comprehension part of the course which can be seen here.
They threw in something called *args and **kwargs in the middle of my coding practice. So let's
learn about args.

These are functional parameters. Arguments are *args  and pronounced "star args" and keyword
arguments are **kwargs  and pronounced "double star qw-ar-gs". These are things in Python
functions that allow for the code to accept an abitrary number of arguments and keyword
arguments without pre-defining parameters in the function calls.

So let's say we want to setup a function that will return 5% of the sum of 2 numbers. But what if I
then want to change the function to take a variable or arbitrary amount of arguments. So then I
don't have to define the number numbers the function will do. Note that the *args  will become a
tuple. The *args  could technically be anything; it could be *urwordshere  or *spam . Best practice is
to call it *args .

CBAkwarg01.png

Python offers a way to handle an arbitrary number of key word arguements. It creates a dictionary
of key value pairs. So it does the same thing that *args  does where that returns a tuple, but
instead returns a dictionary. Then the user can define values in the dictionary that can be messed
with inside the function. Again **kwargs  could be anything after ``**urnamehere . Best practice is to 
call it **kwargs``` so it's easy to recognize.

Notes - Friday 01/15/21
Friday 01/15/21

*args and **kwargs
*args

**kwargs

Why *args and **kwargs?

https://docs.google.com/document/d/181AMuP-V5VnSorl_q7p6BYd8mwXWBnsZY_sSPA8trfc/edit
https://bookstack.almueti.com/uploads/images/gallery/2021-01/CBAkwarg01.png


They're useful to use when you pull in outside libraries. They might not be useful now but will be
useful later. Note that they can be combined

CBAkwarg02.png

The question being asked was:

"Define a function called myfunc that takes in a string, and returns a matching strnig where every
even letter is uppercase and every odd letter is lower case. Assume that the incoming string only
contains letters and don't worry about the numbers, spaces, or punctuation. The output string can
start with either upper or lower case. The letters should alternate throughout the string. Just
provide the definition for the function. You don't need to run it. Remember you need to use the
return function and not print."

The answer was:

Things I learned:

I didn't realize that you could combine range and length to count the number of letters.
.join - Joins all items in a tuple into a string with a hash character as a seperator
Remember that .append is what modifies the list that variable out calls out
An explanation on what is going on in this code can be found here

Things I learned from the Test - Skyline
question

def myfunc(x):
    out = []
    for i in range(len(x)):
        if i%2==0:
            out.append(x[i].lower())
        else:
            out.append(x[i].upper())
    return ''.join(out)

https://bookstack.almueti.com/uploads/images/gallery/2021-01/CBAkwarg02.png
https://www.w3schools.com/python/ref_string_join.asp
https://gist.github.com/Pierian-Data/5767f49f825dbc9f9bf1357b2152b010#gistcomment-2601474


Today I'm working on some practice problems. I'm going to take some notes on what I learned
while I go through these problems. Unfortunately the solutions include things we've never gone
over in the lectures. Reference this link for the questions and this link for the answers.

 

Remember to read over the notes carefully and don't rush to solve a problem for no
reason.

 

If you're using string.split() function, remember that the resulting list will have index
positions based on the entire string. Then you can breakdown the string further. For
example:
my_list_of_words = some_words.split() = ['Hello World']  (this isn't perfect syntax, just go with it)
yields ['Hello','World']
This means that my_list_of_words[0]  yields 'Hello'  and my_list_of_words[1]  yields 'World'
Then you can break this down further to get just individual letters. For example
my_list_of_words[0][0]  yields 'H'  and my_list_of_words[1][0]  yields 'W'

 

.join()  method: So you can use this method to combine or join strings. The basic syntax is:
"stuff_between_ur_words".join(ur_variable)
So let's look at a practice problem to explain it:

MASTER YODA: Given a sentence, return a sentence with the words reversed

master_yoda('I am home') --> 'home am I'
master_yoda('We are ready') --> 'ready are We'

CBAPractice01.png

 

Notes - Sunday 01/17/21
TIL

TIL Continued...

https://github.com/Pierian-Data/Complete-Python-3-Bootcamp/blob/master/03-Methods%20and%20Functions/03-Function%20Practice%20Exercises.ipynb
https://github.com/Pierian-Data/Complete-Python-3-Bootcamp/blob/master/03-Methods%20and%20Functions/04-Function%20Practice%20Exercises%20-%20Solutions.ipynb
https://bookstack.almueti.com/uploads/images/gallery/2021-01/CBAPractice01.png


You can find the absolute value of a number by using abs. The syntax would be
abs(ur_number)

 

Assignment operators exist. Here's a list of them. Things like += and = can help. I didn't
know they existed.

 

Remember that you can get the sum of numbers using sum(ur_numbers)

 

When you have a loop, order the loop matters. It will literally execute the logic line by line
so if you're not setting up the loop in the order you want it to check in, it won't output
what you want.

https://www.tutorialspoint.com/python/python_basic_operators.htm

